Sphere to rod transitions in self assembled systems probed using direct force measurement.

نویسندگان

  • Christopher J Fewkes
  • Rico F Tabor
  • Raymond R Dagastine
چکیده

The influence of nanoparticle shape, in particular the sphere to rod transition, on surface forces and consequently the properties of colloidal fluids is an interesting but not well investigated phenomenon. Here, the surface force behaviour of concentrated surfactant solutions containing cetyltrimethylammonium bromide and sodium salicylate with micelle shapes varying from slightly prolate to high aspect ratio rods was measured. Atomic force microscopy (AFM) with both rigid particle and soft droplet probes was used with comparisons and analysis made using the Chan-Dagastine-White model. It is observed that small changes to the micelle shape result in no discernable differences to the surface force behaviour, however, once the micelles are elongated significantly, the long range forces adjust in nature from oscillatory to that of a single attractive force well. This highlights the importance that nanocolloid shape has on the behaviour and properties of emulsions and other colloidal fluids, specifically for emulsion flocculation and handling in systems of rod and worm like micelles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solvation Force in Hard Ellipsoid Molecular Liquids with Rod-Sphere and Rod- Surface Interactions

In previous work, one of us calculated the Solvation force of hard ellipsoid fluid with hard Gaussian overlap potential using hard needle wall interaction and non-linear equation proposed by Grimson- Rickyazen. In present work, using density functional theory and extended restricted orientation model, the solvation force of hard ellipsoid fluid in presence of more realistic rod- sphere and rod-...

متن کامل

The role of attractive interactions in rod-sphere mixtures.

We present a computer simulation study of binary mixtures of prolate Gay-Berne particles and Lennard-Jones spheres. Results are presented for three such rod-sphere systems which differ from each other only in the interaction between unlike particles. Both the mixing-demixing behavior and the transitions between the isotropic and any liquid crystalline phases are studied for each system, as a fu...

متن کامل

Direct structure determination of systems with two-dimensional periodicity

We describe a new x-ray method for the direct measurement of structures which have two-dimensional (2D) periodicity, and are positionally correlated with an underlying substrate crystal. Examples include reconstructed crystal structures at interfaces, layered heterostructures, crystalline–amorphous interfaces, and self-assembled structures on crystalline substrates. The structure is obtained by...

متن کامل

Virus particle assembly into crystalline domains enabled by the coffee ring effect.

Tobacco mosaic virus particles can be rapidly assembled into 3D-domains by capillary flow-driven alignment at the triple contact-line of an evaporating droplet. Virus particles of ∼150 Å diameter can be resolved within individual domains at the outer rim of the "coffee-ring" type residue by atomic force microscopy. The crystalline domains can also be probed by X-ray microdiffraction techniques....

متن کامل

Micellar dipole potential is sensitive to sphere-to-rod transition.

Structural transitions involving shape changes play an important role in cellular physiology. Charged micelles offer a convenient model system in which structural transitions can be suitably induced by increasing the ionic strength of the medium. In this paper, we have explored sphere-to-rod transition in charged micelles of SDS and CTAB by monitoring micellar dipole potential using the dual wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 11 7  شماره 

صفحات  -

تاریخ انتشار 2015